Percolation on finite graphs and isoperimetric inequalities
نویسندگان
چکیده
Consider a uniform expanders family Gn with a uniform bound on the degrees. It is shown that for any p and c > 0, a random subgraph of Gn obtained by retaining each edge, randomly and independently, with probability p, will have at most one cluster of size at least c|Gn|, with probability going to one, uniformly in p and the size of the expander. The method from Ajtai, Komlós and Szemerédi [1] is applied to obtain some new results about the critical probability for the emergence of a giant component in random subgraphs of finite regular expanding graphs of high girth, as well as a simple proof of a result of Kesten [16] about the critical probability for bond percolation in high dimensions. Several problems and conjectures regarding percolation on finite transitive graphs are presented.
منابع مشابه
A Resistance Bound Via An Isoperimetric Inequality
An isoperimetric upper bound on the resistance is given. As a corollary we resolve two problems, regarding mean commute time on finite graphs and resistance on percolation clusters. Further conjectures are presented.
متن کاملExplicit isoperimetric constants, phase transitions in the random-cluster and Potts models, and Bernoullicity
The random-cluster model is a dependent percolation model that has applications in the study of Ising and Potts models. In this paper, several new results for the random-cluster model with cluster parameter q ≥ 1 are obtained. These include an explicit pointwise dynamical construction of random-cluster measures for arbitrary graphs, and for unimodular transitive graphs, lack of percolation for ...
متن کاملIsoperimetry and heat kernel decay on percolation clusters
Short title: Isoperimetry on percolation clusters. Abstract: we prove that the heat kernel on the infinite Bernoulli percolation cluster in Z almost surely decays faster than t−d/2. We also derive estimates on the mixing time for the random walk confined to a finite box. Our approach is based on local isoperimetric inequalities. Some of the results of this paper were previously announced in the...
متن کاملEdge-isoperimetric inequalities for the symmetric product of graphs
The k-th symmetric product of a graph G with vertex set V with edge set E is a graph G{k} with vertices as k-sets of V , where two k-sets are connected by an edge if and only if their symmetric difference is an edge in E . Using the isoperimetric properties of the vertex-induced subgraphs of G and Sobolev inequalities on graphs, we obtain various edge-isoperimetric inequalities pertaining to th...
متن کاملLog-sobolev, Isoperimetry and Transport Inequalities on Graphs
In this paper, we study some functional inequalities (such as Poincaré inequalities, logarithmic Sobolev inequalities, generalized Cheeger isoperimetric inequalities, transportation-information inequalities and transportation-entropy inequalities) for reversible nearest-neighbor Markov processes on a connected finite graph by means of (random) path method. We provide estimates of the involved c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002